Monatshefte für Chemie 102, 94-101 (1971) © by Springer-Verlag 1971

Untersuchungen der Fluoro-metallate(III), 2. Mitt.:

Thermoanalytische Untersuchungen von Hydrazinium-(1+ und 2+)-fluoro-aluminaten -gallaten, und -indaten

Von

Peter Bukovec und Jože Šiftar

Aus dem Laboratorium für anorganische Chemie der Universität Ljubljana und dem Institut "Jožef Stefan", Ljubljana

Mit 3 Abbildungen

(Eingegangen am 17. August 1970)

Die thermische Zersetzung dieser Verbindungen im Argon wird beschrieben und führt zu den drei neuen Verbindungen N₂H₅GaF₄, N₂H₅InF₄ und N₂H₅GaF₄ · N₂H₆F₂. Außerdem sind zwei neue Phasen mit den Verhältnissen N₂H₄ : 2 Ga : 6 F und N₂H₄ : In : 3 F isolierbar. Die thermische Zersetzung von N₂H₆AlF₅ verläuft analog dem N₂H₆GaF₅ ohne trennbare Stufen. Gitterabstände und IR-Spektren der neuisolierten Phasen sind angegeben.

Fluoro Metallates(III), II: Thermoanalytical Investigation of $Hydrazinium(^{1+} and ^{2+})$ -fluoroaluminates, -gallates, and -indates

The thermal decomposition of these compounds in argon results in the following three new compounds: $N_2H_5GaF_4$, $N_2H_5InF_4$, and $N_2H_5GaF_4 \cdot N_2H_6F_2$. Besides, two new phases with composition $N_2H_4: 2 \text{ Ga}: 6 \text{ F}$ and $N_2H_4: 1n: 3 \text{ F}$ are noticed. The thermal decomposition of $N_2H_6AlF_5$ follows the same path as $N_2H_6GaF_5$, but no separable steps could be observed. IR spectra together with the d spacings of the new compounds are included.

Die Natur der in unserer ersten Mitteilung¹ beschriebenen Verbindungen hat diese Untersuchungsrichtung als zweckmäßig angeregt, besonders weil mehrmals die Herstellung der entsprechenden Metallfluoride durch den thermischen Abbau der Ammoniumhexafluorometallate des Aluminiums, Galliums und Indiums versucht wurde. Außerdem sind die thermischen Zersetzungsstufen für die Vertiefung unserer Kenntnisse der auftretenden Bindungsverhältnisse und für die Herstellung neuer Verbindungen interessant.

¹ J. Šijtar und P. Bukovec, Mh. Chem. 101, 1184 (1970).

Experimenteller Teil

Es wurde in der Literatur der schon ausführlich beschriebene² Mettler-Thermoanalyser mit einem makrothermogravimetrischen Meßkopf (TDMa) und einem kombinierten Mikro-DTA-TGA-Meßkopf (TD2) benutzt. Versuchsbedingungen: Hochtemperaturofen, Aufheizgeschwindigkeit 1°C/Min., Argon-Atmosphäre mit einer Strömungsgeschwindigkeit 5 l/Stde., Einwaage 1 g für TDMa und 10 mg für TD2, bei Messungen mit dem Meßkopf TD2 diente uns als Vergleichssubstanz eine gleich große Einwaage von α -Al₂O₃.

Alle bei der thermischen Zersetzung isolierbaren und beständigen Phasen wurden analytisch, röntgenographisch und teilweise IR-spektroskopisch untersucht. Die angewendeten Methoden bzw. Geräte sind in unserer 1. Mitt.¹ angegeben.

Resultate und Diskussion

Die Resultate der thermogravimetrischen Messungen sind in den Abb. 1-3 wiedergegeben. Die Gallium- und Indium-Verbindungen zeigten dabei trennbare Stufen, im Gegensatz mit Hydrazinium⁽²⁺⁾pentafluoroaluminat. Deshalb möchten wir jene zuerst behandeln.

N₂H₆[GaF₅H₂O] verliert bei 80° C (alle angegebenen Temperaturen sind Maxima der DTG-Kurven) das Wasser. Das Dehvdratationsprodukt ist analytisch und nach *Guinier*-Aufnahmen identisch mit N₂H₆GaF₅. So ist die weitere thermische Zersetzung beider Verbindungen erwartungsgemäß die gleiche. Bei 205° C bekommen wir bei Abgabe von 1 Mol HF eine neue Verbindung, die analytisch und röntgenographisch rein ist und der Formel N₂H₅GaF₄ entspricht. Die folgende Stufe (290° C), die an den beiden Kurven auftritt, entspricht einem Gemenge von N₂H₅GaF₄ und einer Phase, die analytisch das Verhältnis N₂H₄: 2 Ga: 6 F aufweist und welche bei 370° C rein entsteht. Bei 430° C entsteht ein unreines Galliumfluorid. Die dritte Gallium-Verbindung aus dieser Reihe, N2H6[GaF5H2O]·3H2O·3HF zeigt ein Maximum der Abgabe von Wasser und HF bei 183°C. Ob danach N₂H₆GaF₅ oder sofort N₂H₅GaF₄ entsteht, ist nicht klar, jedenfalls geht sie bei 275° C in das gleiche Gemenge über, das wir oben beschrieben haben. Weiter verläuft die Reaktion wie bei den beiden voranstehenden Verbindungen. $N_2H_5F \cdot N_2H_6F_2 \cdot GaF_3 \cdot 2 H_2O$ bzw. $N_2H_5GaF_4(H_2O) \cdot$ ·N₂H₆F₂ verliert bei isothermem Abbau Wasser bei 85°C und gibt röntgenographisch eine reine neue Phase. Unter den Bedingungen der dynamischen thermischen Analyse ist die Abgabe von Wasser im Bereich von 85 bis 150° C noch mit einer Massenabnahme von 2,64% verbunden. Röntgenographisch ist die bei 150° C entstandene Phase die gleiche wie die bei 85° C durch isothermen Abbau erhaltene. Wahrscheinlich kommt es unter dynamischen Bedingungen zur teilweisen Sublimation von Hydrazinium⁽²⁺⁾-fluorid. Weitere Zersetzungen können wir auf Grund

² H. G. Wiedemann, Chemie-Ing. Techn. 36, 1105 (1964).

des Kurvenverlaufes und analytischer Ergebnisse mit Stufen, die analytisch ungefähr den Verhältnissen N_2H_4 : Ga: 3 F (300° C), genau N_2H_4 : 2 Ga: 6 F (340° C) und unreinem GaF₃ (430° C) entsprechen, wiedergeben.

Abb. 1. Thermogravimetrische und differenzthermogravimetrische Zersetzungskurven von $N_2H_6GaF_5H_2O$ (Kurve 1), $N_2H_6GaF_5H_2O$. $3 \text{ HF} \cdot 3 \text{ H}_2O$ (Kurve 2) und $N_2H_5F \cdot N_2H_6F_2 \cdot \text{Ga}F_3 \cdot 2 \text{ H}_2O$ (Kurve 3). Argonatmosphäre, Einwaage 1000,0 mg, Aufheizgeschwindigkeit 1°/Min.

Wir haben im Vorigen als Endprodukt immer unreines Galliumfluorid angegeben. Aus der Literatur sind zwei Vorschriften bekannt, die zur dieser Verbindung führen: Nach Hannebohn und Klemm³ durch Fluorierung des Ammonium-hexafluorogallates, nach Brewer und Mitarb.⁴ durch Reaktion von Gallium und gasförmigen HF. Unser Endprodukt zeigt teilweise eine gelbe Färbung, die von GaN stammen dürfte. Tatsächlich haben wir im Guinier-Diagramm die stärkste Linie des GaN, d = 2,43, gefunden, daneben traten nur die bekannten⁴ Gitterabstände des GaF₃ auf. Eine typische Analyse ergab 55,57% Ga und 44,7% F

³ O. Hannebohn und W. Klemm, Z. anorg. allgem. Chem. 229, 337 (1936).

⁴ F. M. Brewer, G. Garton und D. M. L. Goodgame, J. Inorg. Nucl. Chem. 9, 56 (1959).

(GaF: ber. 55,02% Ga, 44,98% F). Wir meinen, daß die Synthese des GaF₃ durch thermische Zersetzung unserer Verbindungen (am besten $N_2H_6GaF_5$) und nachträgliche Fluorierung experimentell einige Vorteile bietet.

Abb. 2. Thermogravimetrische und differenzthermogravimetrische Zersetzungskurven von $N_2H_6AlF_5$ (Kurve 1) und $N_2H_6GaF_5$ (Kurve 2). Argonatmosphäre, Einwaage 1000,0 mg, Aufheizgeschwindigkeit 1°/Min

Von den Indiumverbindungen sind die Verhältnisse bei $N_2H_5InF_4H_2O$ die übersichtlichsten. Auf Grund der Abb. 3 und der analytischen Untersuchungen können wir folgende Stufen unterscheiden: $N_2H_5InF_4H_2O$ verliert (115° C) sein Wasser und geht in $N_2H_5InF_4$ über. Die zweite Stufe entspricht einer neuen Phase mit dem Verhältnis N_2H_4 : In : 3 F. Bei 340° C entsteht aus dieser InF₃. $N_2H_6(InF_4H_2O)_2$ unterscheidet sich — außer durch andere Reaktionstemperaturen — dadurch, daß bei beiden Zwischenstufen immer InF₃ röntgenographisch nachweisbar ist, nach analytischen Befunden in äquimolarem Verhältnis mit den bei $N_2H_5InF_5H_2O$ auftretenden reinen Phasen. Die Temperaturen der einzelnen Übergänge sind: 155°, 240° und 325° C. Bei der Analyse des Endproduktes fanden wir 66,60% In und 33,4% F (ber. für InF₃ : 66,81% In, 33,19% F). Wir haben dieses Produkt nicht so weit untersucht, daß wir eine verbindliche Aussage darüber machen können, wie weit es mit den Präparaten gleichwertig ist, die auf klassischem Weg durch Fluorierung von In-Oxid oder Ammonium-hexafluoroindat von anderen Autoren³ erhalten wurden.

Abb. 3. Thermogravimetrische und differenzthermogravimetrische Zersetzungskurven von $N_2H_5InF_4H_2O$ (Kurve 1) und $N_2H_6(InF_4H_2O)_2$ (Kurve 2). Argonatmosphäre, Einwaage 1000,0 mg, Aufheizgeschwindigkeit 1°/Min

Die thermische Zersetzung von $N_2H_6AlF_5$ verläuft, wie aus Abb. 2 ersichtlich ist, ohne trennbare Stufen, auch bei geringerer Aufheizgeschwindigkeit (0,5° C/Min). Aus dem Kurvenverlauf bei dieser Verbindung und bei $N_2H_6GaF_5$ nehmen wir im wesentlichen einen analogen Zersetzungsverlauf an. Das Endprodukt ist uneinheitlich und entspricht nach analytischen und röntgenographischen Befunden nicht dem AlF₃.

Wir haben auch *DTA*-Messungen ausgeführt mit einem Mikromeßkopf (TD2), wie wir dies schon im experimentellen Teil angeführt haben. Wir sind dann zur Arbeit mit dem thermogravimetrischen Makromeßkopf übergegangen, weil er die Isolierung der für verschiedene zusätzliche Messungen notwendigen Substanzmengen unter gleichen Versuchsbedingungen ermöglichte. Eine detaillierte Wiedergabe der mit erwähntem Mikromeßkopf erhaltenen Resultate liefert keine neuen Gesichtspunkte. Alle DTA-Effekte sind endotherm und verlaufen parallel mit den DTG-Effekten. Die Temperaturen des Mikromeßkopfes sind erwartungsgemäß etwas verschieden von den Temperaturen des Makromeßkopfes, in der Größenordnung von 10° C (nach unten).

Tabelle		1. Pulveraufnahmen der beim thermischen isolierbaren Phasen										Abbau	
						N ₂ H ₅ Ga	ıF	4					
$d, ({\rm \AA})$	I	d, (Å)	I	d, (Å)	I	d, (Å)	I	d, (Å)	I	d, (Å) I	d_{i}	, (Å)	I
7,20	2	3,95	2	3,28	1	2,69	1	2,18	2	1,951 2	1	,682	3
6,37	3	3,88	4	3,20	2	2,63	1	2,12	1	1,935 2	1	,590	1
6,00	2	3,78	3	3, 19	4	2,39	2	2,08	2	1,903 1	1	,542	1
5,08	5	3,55	2	3,12	2	2,27	1	2,05	2	$1,840\ 2$	1	,521	1
4,80	3	$3,\!49$	2	2,97	4	2,25	1	2,02	2	$1,760\ 1$			
4,08	2	3,40	2	2,83	3	2,23	1	1,980	1	1,723 1			
					Ν	$_{2}\mathrm{H}_{4}:2~\mathrm{Gam}$	a:	6 F					
$d,(\mathrm{\AA})$	I	$d, ({ m \AA})$	I	d, (Å)	I	d, (Å)	I	d, (Å)	I	d, (A) I	d	, (Å)	I
4,90	4	2,52	3	2,20	3	1,765	2	1,480	2	$1,340\ 2$	1	,240	2
4,60	3	2,43	4	2,14	2	1,755	1	1,460	3	1,333 2	1	,217	2
4,40	3	2,37	4	2,11	2	1,720	2	1,439	4	$1,320\ 2$			
4,20	3	2,32	1	1,910	3	1,710	5	1,407	1	$1,296\ 2$			
3,90	1	2,27	1	1,855	2	1,640	5	1,384	1	$1,280\ 2$			
3,41	5	2,24	2	1,825	5	1,607	4	1,370	2	$1,264\ 1$			
2,64	3	2,22	3	1,800	4	1,580	5	1,356	2	1,250 1			
				1	V_2	$H_5GaF_4 \cdot I$	\mathbf{N}_{2}	$_{2}\mathrm{H}_{6}\mathrm{F}_{2}$					
$d,(\mathrm{\AA})$	Ĩ	d, (Å)	Ι	$d, (\text{\AA})$	Ι	d, (Å)	I	d, (Å)	I	$d, ({ m \AA})$ I	d_{i}	, (Å)	I
9,50	2	4,92	4	4,11	3	3,51	3	3,06	3	2,77 2	2	,55	1
6,30	3	4,69	3	4,05	3	$3,\!43$	2	2,97	3	2,70 3	2	,52	1
5,50	4	4,57	3	3,95	4	3,25	3	2,93	3	2,66 1	2	.45	4
5,40	3	4,44	3	3,85	1	3,20	1	2,86	1	2,63 1	2	,42	1
5,14	5	4,18	4	3,70	3	3,13	3	2,83	1	2,58 3	2	,40	1
				1	V_2	$H_5GaF_4 \cdot 1$	$\mathbf{N}_{\mathbf{f}}$	$_{2}\mathrm{H}_{6}\mathrm{F}_{2}$					
$d,({\rm \AA})$	I	$d, ({ m \AA})$	Ι	$d,({\rm \AA})$	Ι	$d,({\rm \AA})$	I	$d,({ m \AA})$	I	$d,({\rm \AA})$ I	d	, (Å)	I
2,37	3	2,08	2	1,863	1	1,711	2	1,548	1	1,430 1	1	.289	1
2,34	3	2,07	3	1,855	1	1,703	3	1,540	1	1,413 1	1	,276	1
2,30	1	2,04	2	1,837	3	1,652	2	1,527	1	1,395 2	1	,270	1
2,28	4	2,02	2	1,826	1	1,630	3	1,512	1	$1,390\ 2$	1	,240	1
2,24	2	2,00	2	1,800	1	1,610	2	1,500	1	$1,380\ 2$			
2,22	3	1,933	3	1,783	1	1,599	2	$1,\!480$	3	$1,342\ 1$			
2,17	1	1,902	2	1,770	2	1,579	1	$1,\!470$	3	1,326 1			
2,15	1	1,891	3	1,740	2	1,570	1	1,460	3	$1,314\ 1$			
2.11	2	1,880	2	1.722	2	1.560	Í	1.440	1	$1.308 \ 1$			

Fortsetzung (Tabelle 1)

	• •					$N_2H_5I_1$	ıF,	4					
$d,({ m \AA})$	I	$d,({\rm \AA})$	I	$d,({\rm \AA})$	I	$d,({ m \AA})$	I	$d,({\rm \AA})$	I	$d,({ m \AA})$	I	d, (Å) I
7,20	2	3,52	1	2,50	4	2,02	4	1,760	3	1,595	4	1,420) 1
5,72	5	3,23	5	2,29	4	1,985	2	1,739	2	1,553	2	1,388	52
5,19	5	3,18	4	2,20	1	1,905	2	1,720	3	1,525	2	1,346	33
5,05	3	2,90	4	2,15	4	1,895	3	1.712	3	1.495	1	1,318	3 2
4.30	4	2.86	3	2.13	3	1.880	2	1.680	3	1.485	2	1.292	$\frac{1}{2}$
4.05	1	2.63	3	2.08	4	1.840	2	1.650	3	1.469	1	,	
4.00	1	2.59	4	2.06	3	1,835	$\overline{2}$	1,632	2	1,439	1		
3,80	4	2,56	3	2,04	4	1,795	3	1,610	$\overline{3}$	1,430	1		
$N_2H_4: In: 3 F$													
$d, (\mathrm{\AA})$	I	d, (Å)	I	d, (Å)	I	d, (Å)	I	d, (Å)	I	d, (Å)	I	d, (Å) I
5.10	1	3.36	4	2.58	3	2.13	1	1 900	4	1.649	3	1.369	23
4 90	î	3.27	4	2,50	4	$\frac{2}{2}$ 10	2	1 880	5	1 639	2	1 33'	7 1
4 75	5	3 16	1	2,00	2	2.08	2	1 765	3	1 600	3	1 320	a 1
4 15	4	3.06	1	2,11	2	2,00	1	1 735	ર	1,580	2	1 29/	52
4 05	3	2,00	ŝ	2,28	2	1 080	2	1 700	9	1,560	2	1 270	ή.
2 86	5	2,00	1	2,00	2	1,000	1	1,700	4	1 445	2	1.960) 1] 1
9.55	1	2,70 971	- -	2,52	0 0	1,990	0	1,000	4	1,440	୍ଚ ଚ	1,200	<i>,</i> 1
3,00	1	2,11	لم	ω, ισ	4	1,020	2	1,077	2	1,000	4		
Tabel	le 2.	Lage	und	Inte	nsi	tät der	A	bsorpti	ion	sbande	n	der be	im
ther	nisc.	hen .	Abba	au is	oli	erbarei	n	Phasen	. (Angabe	n	in em	(-1)
N2H54	GaF4			$\begin{array}{l} 3282 \ {\rm ss}, \ 3187 \ {\rm ss}, \ 3128 \ {\rm ss}, \ 2754 \ {\rm s}, \ 2716 \ {\rm s}, \ 2650 \ {\rm m}, \\ 2505 \ {\rm sw}, \ 2385 \ {\rm sw}, \ 2273 \ {\rm sw}, \ 1980 \ {\rm sw}, \ 1635 \ {\rm ss}, \ 1620 \ {\rm s}, \\ 1605 \ {\rm s}, \ 1571 \ {\rm ss}, \ 1554 \ {\rm ss}, \ 1526 \ {\rm ss}, \ 1399 \ {\rm w}, \ 1320 \ {\rm s}, \\ 1310 \ {\rm ss}, \ 1193 \ {\rm ss}, \ 1125 \ {\rm ss}, \ 1092 \ {\rm sw}, \ 1037 \ {\rm s}, \ 1030 \ {\rm s}, \\ 1019 \ {\rm sw}, \ 674 \ {\rm s}, \ 542 \ {\rm ss}, \ 529 \ {\rm ss}, \ 490 \ {\rm ss}, \ 458 \ {\rm m}, \ 440 \ {\rm m}, \\ 315 \ {\rm ss}, \ 284 \ {\rm ss} \end{array}$									
N_2H_4	a : 6 F	$3240~{\rm ss},~3167~{\rm s},~3123~{\rm ss},~3035~{\rm m},~2735~{\rm sw},~2615~{\rm w},~2566~{\rm sw},~2360~{\rm sw},~2325~{\rm sw},~2060~{\rm sw},~1613~{\rm sw},~1580~{\rm ss},~1283~{\rm ss},~1262~{\rm ss},~700~{\rm m},~625~{\rm s},~540~{\rm ss},~327~{\rm s},~290~{\rm s}$											
N_2H_5	$\cdot N_2H$	3310 2660 1010 295 s	m, ss, m, s	3250 s, 2090 sw 1000 m	3 7, 1, s	130 ss, 3 1635 s, h, 945 sv	030 159 v,	0 ss, 288 00 s, 154 490 ss, 4	5 s 0 s 16!	ss, 2890 ss, 1130 5 ss, 40	ss, ss, 5 s,		
N_2H_5	InF4			$3255 \\ 2725 \\ 2225 \\ 1525 \\ 1002$	ss, s, sw ss ss	3180 ss 2667 ss, 2020 sv 1310 m, 957 sw	, ; 20 v, 1 , 6	3144 ss, 636 s, 24 1952 sw, 169 ss, 1 41 s, 479	308 68 16 11 ss,	30 ss, 293 w, 2327 510 ss, 15 4 m, 110 402 ss, 3	88 sv (93 (65	ss, 284 7, 2280 5 s, 1582 w, 1016 5 s, 310 s	8 s, sw, ss, ss,
N_2H_4	: In :	3 F		3265 2780 1285 697 r	m, m, s, n,	$\begin{array}{c} 3245 \ \mathrm{m}, \\ 2610 \ \mathrm{w} \\ 1275 \ \mathrm{s}, \\ 450 \ \mathrm{ss} \end{array}$	31 , 11	50 ss, 300 2350 w, 258 m, 1	65 s 206 10	ss, 2935 n 30 sw, 20 0 sw, 95	n, 920 60 (2910 m, sw 160 sw, 725	sh, 8 s, i w,
-													

 $\label{eq:Intensit} Intensitäten: s = stark, sh = Schulter, m = mittelstark, ss = sehr stark,$ w = schwach, sw = sehr schwach.

In der Tab. 1 sind die Gitterabstände und die entsprechenden Intensitäten von Abbauprodukten, die analytisch und röntgenographisch rein sind, wiedergegeben. Ihre IR-Spektren im Bereich von 4000 bis 250 cm^{-1} sind in der Tab. 2 wiedergegeben.

Wir haben beim thermischen Abbau von Gallium-Verbindungen mehrmals auf Grund analytischer Befunde das Verhältnis N_2H_4 : : 2 Ga: 6 Fangegeben. Beim Abbau von $N_2H_5InF_4H_2O$ bekamen wir ein Produkt mit dem Verhältnis N_2H_4 : In: 3 F. Auf Grund dieser Molverhältnisse ergeben sich zunächst die Formel 2 GaF₃ · N_2H_4 bzw. InF₃ · N_2H_4 , doch zeigt das IR-Spektrum keine Bande, die sich als N—N-Valenzschwingung signieren läßt. Weitere Messungen werden notwendig sein, um diese Frage beantworten zu können.

Dem Fonds "Boris Kidrič" sei für die Unterstützung der Arbeit gedankt.